John Winder

Email

johnwinderphd@gmail.com

johnwinder.ai

john-winder-phd

Location

Location

john-winder-phd

Location

Location

Johnwinder, ai

John-winder-phd

Location

John-winder-phd

Artificial Intelligence | Machine Learning | Reinforcement Learning

Mission

I am a Senior Staff AI/ML Research Scientist at the Johns Hopkins University Applied Physics Laboratory (JHU/APL). In my role as the supervisor of the Advanced Artificial Intelligence Algorithms section of JHU/APL, I lead a team researching reinforcement learning (RL) for real-world platforms such as aircraft, satellites, and complex software systems.

Developing decision-making agents capable of long-term reasoning motivates my work. I aim to create agents that collaborate with humans and other AI agents to generalize learned behaviors across new circumstances, all while operating under uncertainty in dynamic and open environments. I work at the confluence of attention, RL with vision and natural language processing (grounded language acquisition), and multimodal deep generative models.

Education

Ph.D. in Computer Science, University of Maryland, Baltimore County (UMBC)

2019

Advised by Dr. Marie desJardins, Dr. Cynthia Matuszek

Thesis: Abstract Decision Making and Concept Formation for Adaptability and Generalization Research in hierarchical reinforcement learning, state abstraction, probabilistic planning

M.S. in Computer Science, UMBC

2015

Advised by Dr. Marie desJardins, Dr. Tim Oates Research in machine learning, computer vision, feature extraction

B.S. in Computer Science, magna cum laude, *UMBC*

2013

Publications

Proposals (Awarded)

- John Winder, Thomas Urban. Beyond Human Reasoning Bridging the Information Gap. Johns Hopkins University Applied Physics Laboratory (JHU/APL), Propulsion Grant (Internal R&D). Year 4 (competitively awarded each year), 2023-2024. Topics: Al copilot for aircraft, novel neural network architectures, transformers and attention, graph neural networks (GNNs), variational auto-encoders (VAEs), multi-agent reinforcement learning (MARL), human-machine collaboration in virtual reality (VR) using Unity.
- ♦ John Winder. Eliminate the Middleman. JHU/APL, Propulsion Grant (Internal R&D). Year 1 (competitively awarded each year), 2023-2024. Topics: Multimodal foundation models, MARL, uncrewed autonomous vehicles (UAVs).

- ♦ John Winder, Janet Zhang. Landsraad. JHU/APL, CUT FACT (Internal R&D). 2023-2024. Topics: Large language models (LLMs), agentic LLMs, retrieval augmented generation (RAG) LLMs.
- ♦ **John Winder**, Thomas Urban. Beyond Human Reasoning Bridging the Information Gap. JHU/APL, Propulsion Grant (Internal R&D). Year 3 (competitively awarded each year), 2022-2023. Topics: Attention, GNNs, VAEs, MARL, human-machine collaboration in VR.
- ♦ **John Winder**. Towards Zero RL Safety Violations. JHU/APL, AD FACT (Internal R&D). 2022-2023. Topics: Safe reinforcement learning, simulation-to-reality (sim2real).
- Arpit Amin, **John Winder**. SMOKEY: Simulating Multi-Agent RL Objectives and Key Engagements. JHU/APL, The Wildfire Challenge: We didn't start the fire, but..., Ignition Grant (Internal R&D). 2022-2023. Topics: MARL, cellular automata.
- Noah Jacobsen, John Winder. Advanced Neural Architectures for Human-Robot Maritime Coexistence. JHU/APL, Let's Kick some AIS, (Internal R&D). 2022-2023. Topics: Data visualization, VAEs.
- ♦ Janet Zhang, John Winder, Stephen Vance. Multi-Agent Dreamer for Aircraft. JHU/APL, Mission Area Lightning Grant, (Internal R&D). 2022-2023. Topics: World models, model-based RL, MARL.
- John Winder, Thomas Urban. Beyond Human Reasoning Bridging the Information Gap. JHU/APL, Propulsion Grant (Internal R&D). Year 2 (competitively awarded each year), 2021-2022. Topics: Self-attention, GNNs, VAEs, MARL, spatiotemporal prediction, cognitive modeling.
- Thomas Urban, Edward White, Matthew Sharp, **John Winder**. *Providentia's Potential*. JHU/APL, Propulsion Grant (Internal R&D). Year 1 (competitively awarded each year), 2021-2022. Topics: Causal inference and machine learning, counterfactual reasoning, Bayesian networks.
- ♦ **John Winder**. Ender's Dilemma: Defeating the Hive Mind. JHU/APL, AD FACT (Internal R&D). 2021-2022. Topics: Multi-agent, hierarchical, and model-based reinforcement learning (MARL, HRL, MBRL).
- → John Winder, Thomas Urban. Beyond Human Reasoning Bridging the Information Gap. JHU/APL, Propulsion Grant (Internal R&D). Year 1 (competitively awarded each year), 2020-2021. Topics: Novel neural network architectures (memory and self-attention), probabilistic graphical models, human-machine interaction, MARL.
- ♦ **John Winder**. Adversarial Attacks on RL & Explainable RL Agents. JHU/APL, "I Have Hammer" Projects (Internal R&D). 2021-2022. Topics: Adversarial attacks on reinforcement learning, explainable machine learning (XAI/XRL).

- Contributions to proposals for research with the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL). JHU/APL. 2020-2023. Award total: on the order of \$1MM. Topics: Transformers, world models, MARL, novel metrics for collaboration.
- Cynthia Matuszek, Francis Ferraro, John Winder. NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition. National Science Foundation (NSF), Information & Intelligent Systems (IIS). 2020-2023. Award total: \$748,724. Topics: Grounded language learning for robots, manifold alignment, imitation learning, inverse reinforcement learning.
- Dan Lee, John Winder. STTR Phase I: A Machine Learning Framework for Comprehensive Dental Caries Detection. National Science Foundation (NSF), Industrial Innovation & Partnerships (IIP). 2020-2021. Award total: \$224,999. Topics: Medical imaging, computer vision for radiology, semantic segmentation, semi- and self-supervised learning.
- Marie des Jardins [and John Winder (student co-author)]. Concept Formation in Partially Observable Domains. National Science Foundation (NSF), Information & Intelligent Systems (IIS). 2018-2021. Award total: \$399,993. Topics: Concept-based knowledge transfer, state abstraction, online function approximation for contextual bandits.

Journal Articles

♦ Karan K Budhraja, John Winder, Tim Oates. Feature Construction for Controlling Swarms by Visual Demonstrations. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 12(2), 10. 2017.

Conference Papers

- Gaoussou Youssouf Kebe, Padraig Higgins, Patrick Jenkins, Kasra Darvish, Rishabh Sachdeva, Ryan Barron, **John Winder**, Don Engel, Edward Raff, Francis Ferraro, Cynthia Matuszek. A Spoken Language Dataset of Descriptions for Speech-Based Grounded Language Learning. Proceedings of The Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021). 2021.
- → John Winder, Stephanie Milani, Matthew Landen, Erebus Oh, Shane Parr, Shawn Squire, Marie desJardins, Cynthia Matuszek. Planning with Abstract Learned Models While Learning Transferable Subtasks. Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20). 2020.
- ◇ David Abel*, John Winder*, Marie desJardins, Michael L Littman. The Expected-Length Model of Options. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) [*equal contribution]. 2019.

- Nakul Gopalan, Marie desJardins, Michael L Littman, James MacGlashan, Shawn Squire, Stefanie Tellex, John Winder, Lawson LS Wong. Planning with Abstract Markov Decision Processes. Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS-17). 2017.
- Nicholay Topin, Nicholas Haltmeyer, Shawn Squire, John Winder, Marie desJardins, James MacGlashan. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-15). 2015.

Workshop Papers & Extended Abstracts

- Patrick Jenkins, Rishabh Sachdeva, Gaoussou Youssouf Kebe, Padraig Higgins, Kasra Darvish, Edward Raff, Don Engel, John Winder, Francis Ferraro, Cynthia Matuszek. Presentation and Analysis of a Multimodal Dataset for Grounded Language Learning. arXiv preprint arXiv:2007.14987. 2020.
- Patrick Jenkins, Padraig Higgins, Rishabh Sachdeva, John Winder, Cynthia Matuszek. GLD: A Grounded Language Dataset of Object Images and Descriptions in Natural Language Text and Speech. The 8th Mid-Atlantic Student Colloquium on Speech, Language and Learning (MASC-SLL 2020) [Extended Abstract]. 2020.
- Monali Saraf, Padraig Higgins, John Winder, Cynthia Matuszek. A Human-Robot Interaction Data Set: Towards Active Learning. The 8th Mid-Atlantic Student Colloquium on Speech, Language and Learning (MASC-SLL 2020) [Extended Abstract]. 2020.
- John Winder, Stephanie Milani, Matthew Landen, Erebus Oh, Shane Parr, Shawn Squire, Marie desJardins, Cynthia Matuszek. Planning with Abstract, Learned Models. Do Good Robotics Symposium (DGRS-19) [Extended Abstract]. 2019.
- ♦ **John Winder**, Marie des Jardins. *Concept-Aware Feature Extraction for Knowledge Transfer in Reinforcement Learning*. Knowledge Extraction from Games (KEG-18) Workshop at the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18). 2018.
- ♦ John Winder, Shawn Squire, Matthew Landen, Stephanie Milani, Marie des Jardins. *Towards Planning With Hierarchies of Learned Markov Decision Processes*. Integrated Execution of Planning and Acting Workshop (IntEx-17) at the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS-17). 2017.
- ♦ **John Winder**. Anomaly Reasoning through Concept Formation for Planning and Reinforcement Learning. Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS-17) [Doctoral Consortium]. 2017.
- ♦ Shawn Squire, **John Winder**, Matthew Landen, Stephanie Milani, Marie desJardins. *R-AMDP: Model-Based Learning for Abstract Markov Decision Process Hierarchies*. The Third Conference on Reinforcement Learning and Decision Making (RLDM-17) [Extended Abstract]. 2017.

- Nakul Gopalan, Marie desJardins, Michael L Littman, James MacGlashan, Shawn Squire, Stefanie Tellex, John Winder, Lawson LS Wong. Planning with Abstract Markov Decision Processes. The Third Conference on Reinforcement Learning and Decision Making (RLDM-17) [Extended Abstract]. 2017.
- ♦ John Winder. A Framework for Anomaly Reasoning: Interpretation through Concept Formation for Knowledge Transfer and Lifelong Learning. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) [Doctoral Consortium]. 2016.
- Nakul Gopalan, Marie des Jardins, Michael L Littman, James MacGlashan, Shawn Squire, Stefanie Tellex, John Winder, Lawson LS Wong. Planning with Abstract Markov Decision Processes. Abstraction in Reinforcement Learning Workshop at the Thirty-Third International Conference on Machine Learning (ICML-16). 2016.

3 A /			
Worl	k Ex	kperi	ence

Johns Hopkins University Applied Physics Laboratory Advanced Al Algorithms Section, Intelligent Platforms Group Laurel, MD Section Supervisor (Senior Professional Staff Scientist) Feb. 2021 - Present

Johns Hopkins University Applied Physics Laboratory *Laurel, MD*

Senior Professional Staff Scientist July 2020 - Feb. 2021

Department of Computer Science and Electrical Engineering *UMBC*

Adjunct Assistant Professor
October 2020 - Present

Department of Computer Science and Electrical Engineering UMBC

Faculty Research Assistant Fall 2019 - July 2020

Interactive Robotics and Language (IRAL) Lab UMBC

Graduate Research Assistant
Fall 2018 - Summer 2019

Multi-Agent Planning and Learning (MAPLE) Lab UMBC

Graduate Research Assistant Fall 2013 - Summer 2018

International Computer Science Institute (ICSI) *Berkeley, CA*

Consultant May - August 2016

CS Matters in Maryland (CSforALL) *Baltimore, MD*

Graduate Assistant May - August 2014, 2015

SAIC (Leidos)Columbia. MD

Computer Science Intern
May - August 2012

Teaching Experience

Reinforcement Learning and Probabilistic Planning

MAPLE Lab Instructor Summer, Winter 2018 Summer, Winter 2017

Principles of Operating Systems

Teaching Assistant
Spring 2014

Object Oriented Programming

Teaching Assistant Fall 2013

Service				
AAAI Conference on Artificial Intelligence (AAAI-23)	Senior Program Committee Fall 2022			
Robotics: Science and Systems (RSS 2020)	Reviewer Spring 2020			
Conference on Human-Robot Interaction (HRI 2020)	Program Committee (Reviewer) Fall 2019			
AAAI Conference on Artificial Intelligence (AAAI-20)	Program Committee (Reviewer) Fall 2019			
Conference on Robot Learning (CoRL-19)	Reviewer Summer 2019			
Knowledge Extraction from Games (KEG-19) Workshop at AAAI-18	Program Committee (Reviewer) Fall 2018			
Integrated Execution of Planning and Acting (IntEx-18) Workshop at ICAPS-18	Program Committee (Reviewer) Spring 2018			
Maryland Computing Education Summit (CE21-Maryland)	Student Organizer, Volunteer April 2016			
Academic Awards —————				
IJCAI-16 Travel Award	June 2016			
T. Rowe Price Associates Scholarship	May 2013			
UMBC Class of 2013 Featured Student	May 2013			
Marshall Scholar Nominee at UMBC	May 2013			
Phi Beta Kappa	Fall 2012			
Undergraduate Research Award	Spring 2011			
UMBC Honors College	2009 - 2013			
Knowledge & Skills —————				

Areas: Artificial intelligence / machine learning (AI/ML) and reinforcement learning (RL) algorithms.

• Classic and Deep RL (DRL) algorithms such as Value Iteration, Q-learning, SARSA, Proximal Policy Optimization (PPO) Soft Actor-Critic (SAC), AlphaZero, MuZero;

- NN architectures such as transformers, graph neural networks (GNNs), convolutional neural networks (CNNs), recurrent NNs (RNNs & LSTMs), multi-layer perceptrons (MLPs);
- Deep generative models such as Generative Adversarial Networks (GANs, e.g., StyleGAN, BigGAN), variational auto-encoders (VAEs), diffusion models;
- Natural Language Processing (NLP) tasks: neural machine translation, fine-tuning large language models (LLMs), using foundation models (FMs), reinforcement learning with human feedback (RLHF);
- Computer Vision (CV) tasks: object detection, object recognition, semantic segmentation, fine-tuning large CV models;
- Techniques: data augmentation (e.g., CutMix), self-supervised training (e.g., triplet loss), model surgery, curriculum learning, population-based training;
- Traditional supervised ML such as decision trees, random forests, logistic regression, naive Bayes, Bayesian networks, support vector machines;
- Unsupervised learning (dimensionality reduction and clustering) such as t-SNE, UMAP, PCA;
- Designing ML experiments, collecting and annotating large scale data sets, managing dozens of annotators, conducting inter-annotator reliability assessments and data quality reviews.

Al/ML, Deep learning Frameworks: Python: PyTorch, Tensorflow/Keras, JAX, ray/RLlib, stable-baselines3, OpenAl gym (also Mujoco, DM Control Suite, PettingZoo, OpenSpiel, many more), HuggingFace Transformers, scikit-learn, fast.ai, MONAl); C/C++: Nvidia CUDA; Java: BURLAP, Weka.

Data analysis, visualization: Python (NumPy/SciPy, IPython / Google Colab, Matplotlib, Plotly, Tensorboard, Weights & Biases), D3.js, Excel, R, MATLAB, Mathematica; explainability techniques and confidence measurements; data de-identification for HIPAA compliance.

General software development: Python (PyQt, Cython), Java/Kotlin, C, C++.

Web development: PHP (Laravel), SQL, JavaScript (Node.js, React), HTML, CSS.

Misc. programming: Java/Kotlin (Android development), libGDX (game development), C# (Unity), Git, LaTeX, Bash, Linux.

Software Architecture (API/Library Design): At JHU/APL I have designed two large-scale libraries for training reinforcement learning agents using a reproducible, configuration-driven paradigm. The libraries feature curriculum learning, population-based training, self-play and mixed heuristic-vs-RL play. They have been used to train hundreds of highly performant agents including those used on projects for DARPA and AFRL. As a PhD student I redesigned and refactored our lab's BURLAP library to include more advanced serialization, parallelization, and deep RL algorithms.

Leadership: Principal investigator or technical lead on 5+ projects; proposal/grant writing, raising funds from customers and investors (Lt Cols, VCs / Angels, CEOs); project scoping, planning, and execution for technical teams with 10+ SMEs.

Operations: Project management, budgeting (DFARS compliance, SBIR/STTR for NSF).